Glass needle-mediated microinjection of macromolecules and transgenes into primary human blood stem/progenitor cells.

نویسندگان

  • B R Davis
  • J Yannariello-Brown
  • N L Prokopishyn
  • Z Luo
  • M R Smith
  • J Wang
  • N D Carsrud
  • D B Brown
چکیده

A novel glass needle-mediated microinjection method for delivery of macromolecules, including proteins and larger transgene DNAs, into the nuclei of blood stem/progenitor cells was developed. Temporary immobilization of cells to extracellular matrix-coated dishes has enabled rapid and consistent injection of macromolecules into nuclei of CD34(+), CD34(+)/CD38(-), and CD34(+)/CD38(-)/Thy-1(lo) human cord blood cells. Immobilization and detachment protocols were identified, which had no adverse effect on cell survival, progenitor cell function (colony forming ability), or stem cell function (NOD/SCID reconstituting ability). Delivery of fluorescent dextrans to stem/progenitor cells was achieved with 52% +/- 8.4% of CD34(+) cells and 42% +/- 14% of CD34(+)/CD38(-)cells still fluorescent 48 hours after injection. Single-cell transfer and culture of injected cells has demonstrated long-term survival and proliferation of CD34(+) and CD34(+)/CD38(-) cells, and retention of the ability of CD34(+)/CD38(-) cells to generate progenitor cells. Delivery of DNA constructs (currently </= 19.6 kb) and fluorescently labeled proteins into CD34(+) and CD34(+)/CD38(-) cells was achieved with transient expression of green fluorescent protein observed in up to 75% of injected cells. These data indicate that glass needle-mediated delivery of macromolecules into primitive hematopoietic cells is a valuable method for studies of stem cell biology and a promising method for human blood stem cell gene therapy. (Blood. 2000;95:437-444)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells

Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...

متن کامل

Expansion of Non-Enriched Cord Blood Stem/Progenitor Cells CD34+ CD38- Using Liver Cells

Many investigators have used xenogeneic, especially murine stromal cells and fetal calf serum to maintain and expand human stem cells. The proliferation and expansion of human hematopoietic stem cells in ex vivo culture were examined with the goal of generating a suitable protocol for expanding hematopoietic stem cells for patient transplantation. Using primary fetal liver cells, we established...

متن کامل

Specification of Hemato-Endothelial-Like Structures and Generation of Hematopoietic Progenitor Cells from Human Pluripotent Stem Cells

 Background and purpose: Human pluripotent stem cells (hPSCs) with the ability to differentiate into adult cells have provided a new perspective for treatment of some diseases. But, the efficiency of differentiation methods to generate hematopoietic progenitor cells (HPCs) is faced with multiple challenges. In the present study, we investigated the formation of hemato-endothelial-like structure...

متن کامل

Advances in Hematopoietic Stem Cell Mobilization and Peripheral Blood Stem Cell Transplantation

Hematopoietic stem/progenitor cells (HSPCs) which give rise to different blood cell types are present within the bone marrow microenvironment, especially in flat bones such as skull, vertebrae, pelvis and chest. Interacting factors such as stromal derived factor-1/CXCR4, very late antigen-4/vascular cell adhesion molecule-1, Lymphocyte function-associated antigen-1/ intercellular adhesion molec...

متن کامل

3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression

New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 95 2  شماره 

صفحات  -

تاریخ انتشار 2000